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CURVE VEERING IN THE EIGENVALUE PROBLEM
OF ROTOR-BEARING SYSTEMS

Yang-Gyu Jei' and Chong-Won Lee"

<Received March 7, 1990)

When the eigenvalues approach each other as system parameters vary, they often cross (curve cross) or abruptly veering (curve
veering). An important characteristic of the curve veering in the eigenvalue problem is that the mode shapes associated with
eigenvalues before veering are abruptly change during veering in a rapid but continuous way. In this paper, the existence of the
curve veering in the eigenvalue problem of general rotor-bearing systems including the effects of rotary inertia and gyroscopic
moments is verified by modal analysis and perturbation technique. The criteria of the curve veering are derived as bearing stiffness
and rotational speed vary. The abrupt but continuous changes of mode shapes during veering are also illustrated.
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1. INTRODUCTION

When eigenvalues are poltted against a system parameter,
the dependence of eigenvalues on the system parameter is
illustrated by a family of loci. When two loci approach each
other, they often cross or abruptly diverge. The latter case is
often called curve veering, during which mode shapes rapidly
change. The existence of curve veering has already been
investigated in the some literature (Classen and Thorne, 1962 ;
Leissa, 1974; Kuttler and Sigillito, 1981; Schajer, 1984), but
the phenomenon has not been universally accepted. The rapid
change in mode shapes during veering has doubt on the
validity of approximate solutions. In 1974, Leissa raised the
question of whether curve veering occurs because of the
mathematical models or results from the approximation
method used to estimate the frequencies. But the existence of
curve veering was recently verified by obtaining exact solu­
tion of the continuous model for a rotating, guided, circular
string(Perkins and Mote, 1986).

Although the name of the curve veering in the eigenvalue
problem of rotor-bearing systems has not been found, the
curve veering phenomenon was already shown in the liter­
ature in the field of rotor dynamics (Yamamoto and ()ta,
1964; Dimentberg, 1961; Crandall and Yeh, 1989). In Cran­
dall and Yeh's words (1989) "It is interesting that when the
curve for an even rotor mode approaches the curve for an
even stator mode, or an odd rotor mode approaches an odd
stator mode, the two modes form a coupled system and the
curves repel each other avoiding an intersection"in the Camp­
bell diagram of the natural frequency of a uniform rotor
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rotating in a uniform stator as function of rotational speed.
But since no attention was paid to mode shapes, the

significance of the curve veering could not be noticed. An
important characteristic of the curve veering is that the mode
shapes associated with the eigenvalues before veering are
interchanged during veering in a rapid but continuous way.
The information of mode shapes as well as eigenvalues is
important for the rotor dynamic analysis (Jei and Lee, 1987 ;
Lee and lei, 1988; lei and Lee, 1989).

Modal analysis of a continuous rotor-bearing system in­
cluding the effects of gyroscopic moment, rotary inertia and
natural boundary conditions was performed (Jei and Lee,
1987; Lee and lei, 1988). The exact solution methods were
also developed, and various vibration characteristics such as
whirl speeds, mode shapes, forced responses and stabilities
were investigated. In this paper the curve veering in the
eigenvalue problem of rotor-bearing systems is verified using
the modal analysis and exact solution methods developed by
authors(Jei and Lee, 1987; Lee and lei, 1988) and the pertur­
bation technique developed by Perkins and Mote (1986). As
bearing stiffness and rotational speed vary, the criteria of the
curve veering are derived. The abrupt but continuous changes
in mode shapes during veering are also illustrated.

2. CURVE VEERING IN THE
EIGENVALUE PROBLEM OF

ROTOR SYSTEMS

Some analytical solutions for the transverse vibration
analysis of distributed parameter rotor systems were provid­
ed, and modal analyses were performed, but most works have
considered only simple models such as Euler-Bernoulli shafts
under geometric boundary conditions. Such rotor systems are
essentially non-rotating systems_ The difficulties in modal
analysis of rotor-bearing systems which include the effects of
rotary inertia and gyroscopic moments arise from the fact
that the resulting eigenvalue problems are characterized by



CURVE VEE.'RING IN THE ElGEll/VALUE PROBLEM OF ROTOR BEARING SYSTEMS 129

where M,L and Bi represent the homogenous, linear, differ·
ential defined in terms of a system parameter E, and ;r
denotes the system eigenfunction vector. L is of order 2p
while Mand Bi are of order 2p-l at most and M is positive
definite over the range of E. rand 0" denote the field and
boundary in the eigenvalue problem. Any boundary condi­
tions containing eigenvalues can be incorporated in the field
equation (La) by extending the definitions of the operators
and the eigenfunctions in Eq.(l) (Jei and Lee, 1987; Lee lei,
1988)

Let us define the inner product of two complex state
vecotrs a={a"a2Y and b={bl,b2}Tas

the presence of skew symmetric matrices with differential
operators as elements, due to rotation and/or damping,
resulting in non-self adjoint eigenvalue problem. By writing
the equation of motion in state space rather than configura­
tion space the standard non-self adjoint eigenvalue problem
of distributed parameter rotor systems which include the
effects of gyroscopic moments and rotary inertia was for­
mulated(Jei and Lee, 1987: Lee and lei, 1988l.

The eigenvalue problem associated with an anisotropic
rotor-bearing system which consists of rigid disks, discrete
anisotropic bearings and non-uniform Rayleigh shafts or an
asymmetrical rotor-bearing system which consists of asym­
metrical rigid disks, discrete isotropic bearings and non­
uniform aymmetrical Rayleigh shafts, is given as (jei and
Lee, 1987; Lee and lei, 1988)

<a, b> = <al,bl >+<a2,b2>
= l'b,a1dx+ l'b2a2dx

(7)Ar= A~ Cr +dr +. xrs/(A~- A2)
As == A~+ cst ds + x sr /(A2- A~)

where
cr=(hr-A~mrr), dr m rr ( _.- krr+A~mrr),

Xrs = (krs - A~mrs)(ks,·- A~msr)
q

k rs == <LlLIft~, W7> r + "£. <LlB.-;~:, W:,> 6,
i''''\

Note that Xrs and Xsr measure the coupling of the unperturbed
eigenfunctions.

With the expansion of cr,dr and X rs in Taylor series about
E=Eo, Eq.(7) can be rewritten as (Perkins and Mote, 1986)

Ar( f) = A~T [D' Cr]f ++[D2cr + D2d r

+D2
X rs/ (A? -- Af)]E2

As(f) = 1.2+ [D' Cs]f i-~-[D2cs+ D2ds+ D2Xsr/(?2- A~)]f2

(8)

where Dk= d k/ dEklEo,k == 1,2,. ... When the eigenvalues are
pure imaginary values, Eq. (8) can be rewritten as

where the constant Kr is to be determined from biorthonor­
mality conditions_ 1/K r , a complex quantity, is the so called
modal norm.

The small variations in system parameter E produce a
small perturbation in the operators L,M and q(O<;,q<;,p)
boundary operators B,. These operators become L = L o +­

LlL,M'=Mo+LlM and B i=BiO +LlBi (i=1,2"",q), where
LlL,M and LIB, are the perturbation operators with norms of
f. To evaluate the criteria of the curve veering in the
eigenvalue problem, assume there exist two nearly equal
eigenvalues A~ and 1.2 for the unperturbed problem. Perkins
and Mote(1986) evaluated the perturbation solutions up to
second order for Ar and As as

(2)

(La)
(1.b)

inr
i=I,2,.··,p onO"
r= 1,2,3,.··

Llftr = ArM;r
Bilftr='O

where the bar denotes the complex conjugate. The adjoint
eigenvalue problem associated with Eq. (l) is given by

where T denotes transpose, ;rand Ws may be biorthnor­
malized so as to satisfy

where Ar = jWr- and j and ware the imaginary unit and
whirl natural frequency, respectively. When D2x rs. D2xsr
are not zero, the loci concavities depend strongly on separa­
tion Iw~- w~l. When the real values of D2xrs and D2xsr are
both negative, the Wr(E) and Ws(f) loci veer away from each
other as they approach. When the real values of D 2xrs and
D2 xsr are both positive, the Wr(E) and Ws(f) loci veer
towards each other as they approach. When the real values of
D2xrs and D2xsr are of opposite sign, the concavities of the
Wr(E) and Ws(E) loci are of the same sign. Then loci now
veer with each other as they approach.

Ws(f)= W2+-~[Dlcs]E+-2-L[D2cs+D2ds]c2
J J

- ~ [D2xsr/(w2- w~)]c'

(5)

(3)

(4)

<M;r, Ws>= O"rs
<Llftr, lJI.,> = ArO"rs

where M* and L* are the adjoints of M and L,re­
spectively, and Ws is the adjoint eigenfunction vector. When
the damping effects of rotor-bearing systems are not consid­
ered, M* and L* are found to beOei and Lee, 1987; Lee
and lei, 1988)

where O"rs is the Kronecker delta. If kyz(x) = - kzy(x) in
anisotropic rotor-bearing stems or plyix)=O in asym­
metrical rotor-bearing systems, Iftr and Ws statisfy the
same eigenvalue problem(Jei and Lee, 1987: Lee and lei,
1988), resulting in

(6)

3. ANISOTROPIC ROTOR-BEARING
SYSTEM

Consider an anisotropic rotor-bearing system consisting of
flexible non-uniform Rayleigh shafts, D discrete rigid disks
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Fig. 3 Whirl speeds of the shaft with two tip disks as bearing
coefficient varies
(c =20, r= 0.02, y~= y}=0.002, yZ= y~=0.004)

Fig. 2 Uniform shaft with two tip disks

30

where Kr=jRr and R r is a real contant(Lee and lei, 1988;
lei, 1988). Since D2xrs and D2Xsr are both negative, as
shown in Eq. (12), the Wr and ws loci veer away fom each
other as they approach.

The curve veering in the whirl natural frequency of an
isotropic rotor-bearing system as rotational speed varies was
shown by Crandall and Yeh(1989). They treated a single
spool machine with the uniform rotor rotating in the uniform
stator supported by isotropic springs. Since the rotor-bearing
system is symmetric about the midplane, the whirling modes
can be divided into two families: even modes; Le., modes
symmetrical about the midplane, and odd modes; i.e., modes
anti-symmetrical about the midplane. They reported that "It
is interesting that when the curve for an odd rotor mode
approaches the curve for an even stator mode, or an even
rotor mode approaches an odd stator mode, there is no
coupling between the modes and curve intersect, each ob­
livious to the presence of the other. On the other hand when
the curve for an even rotor mode approaches the curve for an

f1

msr=,dQ[jp(x)[ aff:;y at;z - aff:;z- atxry Jdx (11)

ksr=O

D2x - -(wO)2[R (Ij (x)( a¢)SY a¢r: _ a¢)ry a¢s:)dx]
rs - r r)o p ax ax ax ax

(12)

D

pA(x) = pAe(x)+ L: mdo-(x - Xd)
d=l

D

h(x) = j'f{x)+ L: No-(x - Xd)
d=!

D

jp(x)=jt(x) + L:!to-(X-Xd)
d=1

B B
kyy(x) = L: ky~o-(x - Xb),kyZ(X) = L: ky~o-(x - Xb)

b=l b=d
B B

kzz(x) = L: kz~o-(x - Xb),kZY(X) = L: kz~o-(x - Xb)
b=l b==l

If kyz(x) = kzy(x) = 0, mode shapes become planar mode
shapes and K r of Eq. (6) becomes a pure imaginary value
(Lee and lei, 1988; lei, 1988). When the mode shapes in y,z
directions, ¢ry and ¢rz, are planar, ¢rz is a pure imaginary
valued function whereas ¢ry is a real valued function. Let
¢rz= j¢r: where ¢r: is a real valued function. Then the D2xrs
in Eq.(9)is given by

Fig. 1 Typical anisotropic rotor system

and pA(x) is the mass per unit length, h(x)the diametral
mass moment of inertia, jp(x) the polar mass moment of
inertia, EI (x)the flexural rigidity, m d the disk mass, f the
length of the rotor, Q the rotational speed, x the position
coordinate along the shaft, and !y(x,t)'/z(x,t) are the dis­
tributed forcing functions in the y and z directions, re­
spectively. The superscript e denotes the shaft and, d and b
denote the d -th rigid disk located at x = Xd and the b-th
discrete bearing located at x = Xb, respectively_

The occurrence of curve veering is, first, checked with
rotational speed variations. When Q=S2n+,dQ,msr and ksr in
Eq. (7) are given, using Eq. (2), by

and B anisotropic bearings as shown in Fig. 1. The equations
of motion including the effects of gyroscopic moment and
rotary inertia are then expressed, in inertial coordinates, as
(Lee and lei, 1988; lei, 1988)
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(14)

(13)

Consider an asymmetrical rotor·bearing system consisting
of flexible non·uniform asymmetrical Rayleigh shafts, D
rigid asymmetrical disks and B isotropic bearings. Since the
governing equations of asymmetrical rotor systems in
3tationary coordinates, S : oxyz, are of periodically varying
coefficients, the equations of motion are conveniently expres·
sed in rotating coordinates, R; OXYZ, defined relative to the
S : oxyz by a single rotation Qt about x axis. The equations
of motion of the asymmetrical rotor-bearing system including
the effects of gyroscopic moments and rotary inertia are in
the inertial coordinates as (Jei and Lee, 1987; lei, 1988),

4. ASYMMETRICAL ROTOR­
BEARING SYSTEMS

where <PT = <pry + j<Prz Since D 2xrs( = D 2xsr )is negative, the Wr
and Ws loci veer away from each other as they approach.

Consider an isotropic rotor·bearing system which consists
of a uniform Rayleigh shaft, two tip disks and two isotropic
bearings as shown in Fig. 2. The rotor is symmetric about the
midplane. The solution procedures are given in (Lee and lei,
1988; lei, 1988). For convenience let introduce the nondimen·
sional vaiables of r (radius of gyration), c (rotational speed),
p(mass of tip disk). "IT and yp(diametral and polar mass
moment of inertia of tip disk), and k (bearing stiffness)
(Lee and lei, 1988 ; lei, 1988). When c = 20, r =0.02, po = pi ==
0.7, r¥== "17-=0.002 and yZ "1),==0.004, whirl speeds are plotted
against bearing stiffness k in Fig. 3. In the veering region of
forward whirl the mode shape variations are shown in Fig. 4.
In Fig. 4 the broken lines show mode shape variations as the
stiffness is increased by a given amount. As shown in Fig. 3,
the curve veering occurs as (JJ2 approaches to W3' But when WI

approaches to W2 or (J!:l, any coupling between WI and Wz or w,.
does not occur. As shown in Fig. 4, the 1st mode is an odd
mode, whereas the 2nd and 3rd modes are even modes.
Therefore the coupling factors between the odd (the 1st
mode)and even(the 2nd and 3rd mode) modes, XIZ and XI3 in
Eq. (13), are zero. During veering the 2nd mode shape changes
to the 3rd mode shape, the 3rd mode shape to the 2nd mode
shape, respectively, in a rapid but continuous way. But the 1st
mode shape slowly changes during crossing.

occurrence of curve veeing is checked. When k=ko+L1k,the
XTS in Eq. (7) is given by

0.2 0.4 0.6 I.a

(a) The 1st mode shape variations

0.0 82 0.4 0.6 a.a la

(b) The 2nd mode shape variations

0.0

0.0

0.a

(c) The 3rd mode shape variations

Fig. 4 Mode shape variations during curve vering
(c =c 20, r =c 0.02, y~= yt= 0.002, yZ=c y),=c 0.004)

even stator mode, or an odd rotor mode approaches an odd
stator mode, the two modes form a coupled system and the
curves repel each other avoiding an intersection." The
reason can be explained by Eq. (12). Between even and odd
modes the integration of Eq. (12) is zero. Therefore there is
no coupling between the modes. But between even (odd) and
even(odd) modes, the integration of Eq.(12) is positive real
value, and the curve veering between the modes occur.

When the bearings are isotropic, that is, kyy =kzz =k and
kyz = kzy = 0, the mode shapes in y and z directions are
identical. As the stiffness coefficients of bearings vary, the
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Fig. 5 Whirl speeds of the asymmetrical shaft supported by
isotropic bearings
(y2=O.000333, E = 1.4, k"=c40, k'=80)

(a) Variations of the 2nd mode shape to the 1st mode
shape
( Y direction)

Fig. 6 Whirl speeds near the region A as shaft asymmetry varies
(y2=O.000333,E=1.4, k O=40, k'=80)
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(c) Variations of the 1st mode shape to the 2nd mode
shape
( Y direction)

(b) Variations of the 2nd mode shape to the 1st mode (d) Variations of the 1st mode shape to the 2nd Mode
~~ ~~

(2 direction) (2 direction)
Fig. 7 Mode shape variations during curve veering

(y2=O.000333,E=1.4, k O=40, k'=80)
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isotropic bearings at its ends (x =0,1), the whirl speeds in
stationary coordinates are shown in Fig. 5. The whirl speeds
near the region A are also shown in Fig. 6 as the shaft
asymmetry, f, varies, Near the curve veering region A the
mode shape changes are shown in Fig. 7. During veering the
2nd mode shape abruptly changes to the 1st mode shape as
shown in Fig. 7(a) and 7(b), and the 1st mode shape to the 2nd
mode shape as shown in Fig. 7 (c), and 7 (d), respectively. As
discussed in (lei and Lee, 1987; lei, 1988) once a solution for
whirl speed, w, found, w become another solution, that is,
complex conjugate relations. And the mode shapes associat'ed
with wand -- w should be a complex conjugate pair. Therefor
near the regions B I ,B2 and Fho i.e., so called major unstable
regions which are bounded by major critical speeds, the mode
shapes do not severely change although curve veerings occur.

(2) Cantilever Beam with a Tip Disk
The cantilever shaft with a tip disk is shown in Fig. 8.

When the principal axes of the asymmetrical tip disk are
coincident with the principal axes of the cantilever shaft, that
is, the relative orientation angle between the principal axes of
the shaft and disk, e, is zero, the mode shapes are planar. If
(J=i=O,rP~(x)and ¢ry(X) become non-planar. The whirl speeds of
the cantilever shaft with a tip disk are shown in Fig. 9 when
(J = 45'. The mode shape changes during the veering near the

Fig. 8 Asymmetrical cantilever shaft with a tip disk

SPIN SPEED J C

Fig. 9 Whirl speeds of asymmetrical cantilever shaft with a tip
disk
r' = 0.00033, E= 1.4, {3'=0.7, :rj=0.001667, f~=0.00233

(17)

(15)

B

k(X)= 2:: k"i3(X - Xb)
b""-l

pIo(X) =pIx(X)- pIY(X)- pI.(X)

D

pA(X)= pAe(X) + 2:: mdi3(X - Xd),
d-o=l

D

p!x(X) = p/i(X) + 2:: pIfB(X - X d)
d=:l

D

pIy(X) = pI;(X) + 2:: pI;i3(X - X d),
d=l

D

p1z(X) = pJi(X) + 2:: pIfi3(X - X d),
d.:::;l

D

pIy.(X) = pI/.(X) + 2:: pMi3(X - Xd),
d=l

where mrs and krf(=ks~) are real constants, and ¢rz=jrPr:
where rPr: is a real valued function. Therefore the coupling
factor Xsr in Eq. (7)

Since D 2xsr is negative, Wr and ws loci veer away from
each other as they approach.

Now we consider two examples of the uniform asym­
metrical shaft supported by isotropic bearings at ends and the
cantilever shaft with a tip disk. Solution procedures are given
in Oei and Lee, 1987; lei, 1988). For convenience let introduce
nondimensional vaiables of d = Iz/Iy, shaft asymmetry), f~, fry

and f~ry (non-dimensional mass moment of inertia of tip disk).
(1) Isotropic Spring Supports
When a uniform aysmmetrical shaft is supported by

mrs = LlQRr[[2 pA( rPsyrPr:+ rPs:rPry)dX

_ [' 1. (a¢s: a¢ry + arPS'La¢r: )dX]
Jo p 0 ax ax ax ax

krs = j(LlQ2+ 2SJoLlQ)Rr[[PA( rPSyrPry+ rPs:¢r:)]dX (16)

- [(pIx- pIy)~rP; ~1ydX- [(pIx- pIz)

arPs: l!Pr:dX]=;'k R
ax ax rs

and pA (X) is the mass per unit length, pIx (X), ply (X),
pIz(X) and pIyz(X) the mass moments of inertia about X, Y
and Z axes, repectively, and m d the disk mass, f the length of
the rotor, Q the rotational speed, and qy(x,t), qz(x,t) are the
distributed forcing functions in the y,z directions, re­
spectively. Ely, Eiz are the flexural shaft rigidity about Y,Z
axes, respectively.

As rotational speed varies, the occurrences of the curve
veering in the eigenvalue problem of asymmetrical rotor­
bearing systems are checked. If pIyz(X) = 0, mode shapes
become planar mode shapes and Kr of Eq. (6) becomes a pure
imaginary value (lei and Lee, 1987; lei, 1988). When the
mode shapes in Y,Z directions, rPry and rPrz, are planar, rP,.
is a pue imaginary function whereas rPry is a real valued
function.

When Q=SJo+LlQ, the mrs and krs in Eq.(7) are given by

where
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Fig. 11 Variations of the 1st mode shape to the 3rd mode shape during curve veering
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region C are shown in Figs. 10 and 11. During the veering the
3rd mode shape abruptly changes to the 1st mode shape as
shown in Figs. 10 (a) -10 (d), and the 1st mode shape to the
3rd mode shape as shown in Figs. 11 (a) -11 (d), respectively.
As shown in Figs. 10, and 11, the mode shapes change in a
rapid but continuous way.

5. CONCLUSIONS

The existence of the curve veering in the eigenvalue prob­
lem of rotor-bearing systems including the effects of gyros·
copic moments and rotary inertia is verified using the modal
analysis and exact solution methods developed by authors
(Jei and Lee, 198i; Lee and Jei, 1988; Jei, 1988) and the
perturbation technique developed by Perkins and Mote
(1986). The criteria of the curve veering are derived as the
bearing stiffness and rotational speed vary. The abrupt but
continuous changes of the mode shapes during veering are
also illustrated.
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